Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic hedgehog in a positive feedback loop.

نویسندگان

  • V Knezevic
  • R De Santo
  • K Schughart
  • U Huffstadt
  • C Chiang
  • K A Mahon
  • S Mackem
چکیده

Several 5' members of the Hoxd cluster are expressed in nested posterior-distal domains of the limb bud suggesting a role in regulating anteroposterior pattern of skeletal elements. While loss-of-function mutants have demonstrated a regulatory role for these genes in the developing limb, extensive functional overlaps between various different Hox genes has hampered elucidation of the roles played by individual members. In particular, the function of Hoxd-12 in the limb remains obscure. Using a gain-of-function approach, we find that Hoxd-12 misexpression in transgenic mice produces apparent transformations of anterior digits to posterior morphology and digit duplications, while associated tibial hemimelia and other changes indicate that formation/growth of certain skeletal elements is selectively inhibited. If the digital arch represents an anterior bending of the main limb axis, then the results are all reconcilable with a model in which Hoxd-12 promotes formation of postaxial chondrogenic condensations branching from this main axis (including the anteriormost digit) and selectively antagonizes formation of 'true' preaxial condensations that branch from this main axis (such as the tibia). Hoxd-12 misexpression can also induce ectopic Sonic hedgehog (Shh) expression, resulting in mirror-image polydactyly in the limb. Misexpression of Hoxd-12 in other lateral plate derivatives (sternum, pelvis) likewise phenocopies several luxoid/luxate class mouse mutants that all share ectopic Shh signalling. This suggests that feedback activation of Shh expression may be a major function of Hoxd-12. Hoxd-12 can bind to and transactivate the Shh promoter in vitro. Furthermore, expression of either exogenous Hoxd-11 or Hoxd-12 in cultured limb bud cells, together with FGF, induces expression of the endogenous Shh gene. Together these results suggest that certain 5' Hoxd genes directly amplify the posterior Shh polarizing signal in a reinforcing positive feedback loop during limb bud outgrowth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The limb deformity mutation disrupts the SHH/FGF-4 feedback loop and regulation of 5' HoxD genes during limb pattern formation.

Mutations in the murine limb deformity (ld) gene disrupt differentiation of the Apical Ectodermal Ridge (AER) and patterning of distal limb structures. However, initial outgrowth of the limb bud is not affected, suggesting that early and late functions of the AER are uncoupled. Similarly, activation of the 5' members of the HoxD gene cluster (Hoxd-11 to Hoxd-13) is not affected in ld mutant pos...

متن کامل

Preaxial polydactyly caused by Gli3 haploinsufficiency is rescued by Zic3 loss of function in mice.

Limb anomalies are important birth defects that are incompletely understood genetically and mechanistically. GLI3, a mediator of hedgehog signaling, is a genetic cause of limb malformations including pre- and postaxial polydactyly, Pallister-Hall syndrome and Greig cephalopolysyndactyly. A closely related Gli (glioma-associated oncogene homolog)-superfamily member, ZIC3, causes X-linked heterot...

متن کامل

Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers

Limb reduction and loss are hallmarks of snake evolution. Although advanced snakes are completely limbless, basal and intermediate snakes retain pelvic girdles and small rudiments of the femur. Moreover, legs may have re-emerged in extinct snake lineages [1-5], suggesting that the mechanisms of limb development were not completely lost in snakes. Here we report that hindlimb development arrests...

متن کامل

Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh.

Sonic hedgehog (Shh) signaling regulates both digit number and identity, but how different distinct digit types (identities) are specified remains unclear. Shh regulates digit formation largely by preventing cleavage of the Gli3 transcription factor to a repressor form that shuts off expression of Shh target genes. The functionally redundant 5'Hoxd genes regulate digit pattern downstream of Shh...

متن کامل

Polydactylous limbs in Strong's Luxoid mice result from ectopic polarizing activity.

Strong's Luxoid (1stD) is a semidominant mouse mutation in which heterozygotes show preaxial hindlimb polydactyly, and homozygotes show fore- and hindlimb polydactyly. The digit patterns of these polydactylous limbs resemble those caused by polarizing grafts, since additional digits with posterior character are present at the anterior side of the limb. Such observations suggest that 1stD limb b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 124 22  شماره 

صفحات  -

تاریخ انتشار 1997